Ali, A. J. and Xu, J. L. and Ismail, A. M. and et al, . (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Research, 97. pp. 66-76.
![]() |
PDF
- Published Version
Restricted to ICRISAT researchers only |
Abstract
Low and unstable rice productivity in many areas of Asia is associated with many abiotic and biotic stresses such as drought, salinity, anaerobic conditions during germination, submergence, phosphorus and zinc deficiency, etc. To develop rice varieties with tolerance to these stresses, we undertook a large backcross (BC) breeding effort for the last 6 years, using three recurrent elite rice lines and 203 diverse donors, which represent a significant portion of the genetic diversity in the primary gene pool of rice. Significant progress has been made in the BC breeding program, which resulted in development of large numbers of introgression lines with improved tolerance to these stresses. Promising lines have been developed with excellent tolerances (extreme phenotypes) to salinity, submergence and zinc deficiency; resistance to brown plant hopper, ability to germinate under the anaerobic condition and low temperature. Our results indicated that there exist tremendous amounts of ‘hidden’ diversity for abiotic and biotic stress tolerances in the primary gene pool of rice. Furthermore, we demonstrated that despite the complex genetics and diverse physiological mechanisms underlying the abiotic stress tolerances, introgression of genes from a diverse source of donors into elite genetic backgrounds through BC breeding and efficient selection (careful screening under severe stress) is a powerful way to exploit this hidden diversity for improving abiotic stress tolerances of rice. We have developed three large sets of introgression lines, which not only provide an unique platform of breeding materials for developing new rice cultivars with superior yield and stability by trait/gene pyramiding, but also represent unique genetic stocks for a large-scale discovery of genes/alleles underlying the abiotic and biotic stress tolerances of rice using genomic tools.
Item Type: | Article |
---|---|
Additional Information: | Funding from the Rockefeller Foundation BMZ/GTZ of German Government, and the ‘948’ and ‘863’ projects from the Ministry of Agriculture and Ministry of Science and Technology |
Uncontrolled Keywords: | Salinity; Zinc deficiency; Anaerobic germination; Submergence; Cold temperature germination; Brown planthopper; Abiotic stress tolerances |
Author Affiliation: | International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines |
Subjects: | Crop Improvement > Plant Breeding |
Divisions: | Other Crops |
Depositing User: | Mr Siva Shankar |
Date Deposited: | 08 Aug 2012 08:49 |
Last Modified: | 08 Aug 2012 08:51 |
Official URL: | http://dx.doi.org/10.1016/j.fcr.2005.08.016 |
URI: | http://eprints.icrisat.ac.in/id/eprint/7248 |
Actions (login required)
![]() |
View Item |