Cui-qing, W. and Li-juan, K. and Sheng, W. and Yu-ming, G. (2017) Near infrared spectroscopy (NIRS) technology applied in millet feature extraction and variety identification. African Journal of Agricultural Research, 12 (26). pp. 2223-2231.
![]() |
PDF
- Published Version
Restricted to ICRISAT researchers only Request a copy |
Abstract
Near infrared spectroscopy (NIRS) technology is widely used on agricultural products for quality detection, classification and variety identification due to its rapid speed and high-efficiency. NIRS experiments were conducted to identify varieties of DUN millet, JIN 21 millet and 5 other types of millet. The NIRS characteristic curves and data of millet samples were collected. The spectroscopic data on different types of millet were analyzed by discriminant analysis, principal component analysis and neural network technology. The calibration set correct classification was 98.9%. A BP neural network prediction model for millet was also built. It was found that the forecast results of original wave spectrum prediction model were best, with its correlation coefficient of validation (Rv) at 0.9999, the standard error of prediction (SEP) was 0.0191 and the root mean square error of prediction (RMSEP) was 0.0189. Moreover, the Rv of first derivative spectra was 0.9976, the SEP and RMSEP were 0.1043 and 0.1437, respectively, and the Rv, SEP and RMSEP of second derivative spectra were 0.9835, 0.28735 and 0.2720 respectively. This study laid the foundation for identification of millet varieties by NIRS.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Millet, Near infrared spectroscopy (NIRS), Principal component analysis, Neural network prediction, Variety identification |
Author Affiliation: | College of Engineering, Shanxi Agricultural University, Taigu, Shanxi, China |
Subjects: | Plant Protection Crop Improvement |
Divisions: | Millet |
Depositing User: | Mr B Krishnamurthy |
Date Deposited: | 07 Nov 2017 03:32 |
Last Modified: | 07 Nov 2017 03:32 |
Official URL: | http://dx.doi.org/10.5897/AJAR2017.12420 |
URI: | http://eprints.icrisat.ac.in/id/eprint/15158 |
Actions (login required)
![]() |
View Item |