mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea

Das, S. and Singh, M. and Srivastava, R. and Bajaj, D. and etl, . (2015) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Research. pp. 1-13.

[img]
Preview
PDF (This is an Open Access Article) - Published Version
| Preview

Abstract

The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8–10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (CaqaPN4.1: 867.8 kb and CaqaPN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (CaqbPN4.1: 637.5 kb and CaqbPN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTLseq- driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting genomics-assisted breeding and genetic enhancement of crop plants, including chickpea.

Item Type: Article
Uncontrolled Keywords: Chickpea, mQTL-seq, pod number, SNP, wild accessions
Author Affiliation: National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
Subjects: Crop Improvement
Divisions: Chickpea
Depositing User: Mr T L Gautham
Date Deposited: 04 Nov 2016 03:51
Last Modified: 04 Nov 2016 03:51
URI: http://eprints.icrisat.ac.in/id/eprint/14485

Actions (login required)

View Item View Item